If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+320=0
a = -16; b = 0; c = +320;
Δ = b2-4ac
Δ = 02-4·(-16)·320
Δ = 20480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20480}=\sqrt{4096*5}=\sqrt{4096}*\sqrt{5}=64\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{5}}{2*-16}=\frac{0-64\sqrt{5}}{-32} =-\frac{64\sqrt{5}}{-32} =-\frac{2\sqrt{5}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{5}}{2*-16}=\frac{0+64\sqrt{5}}{-32} =\frac{64\sqrt{5}}{-32} =\frac{2\sqrt{5}}{-1} $
| (-2x-4)/5+8/3=3(x-1) | | x.5x-3=102 | | (600+40)x=2400 | | (-2x-4)/5+8/3=3(x=1) | | 4x+40=28 | | 4(6x-10)=8(-3x+5) | | 74+55=x+62 | | 2400=(600+40)x | | 6d-7d=9 | | 82-0.4x=78. | | -7-(4x)=-4x+9 | | 25x^2-1350=0 | | 24=4•k | | (2x-6)+x=180 | | 640x=2400 | | 7x=-5+36 | | 0=6/5x-0,01/5x^2-0,6x | | 1.5x=39 | | 9y-11=36 | | x/3+29=-14 | | .25x-2=-3.25 | | 6x+10x=1708 | | 10x+9=6-4x | | 9=6+3d | | y/3-6=7 | | 4c-5+2c=-2 | | 3x-5+x=-1-x-5 | | 3(2n-5)+n=-3n(n-3)-(n-1) | | 4x−17=−1 | | 0.6y=1.8* | | x-2/3=22/5 | | 3/5+15=10+2/5n |